
Pattern Recognition 79 (2018) 79–96 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Maximal granularity structure and generalized multi-view 

discriminant analysis for person re-identification 

Cairong Zhao 

a , 1 , ∗, Xuekuan Wang 

a , 1 , Duoqian Miao 

a , ∗, Hanli Wang 

a , Weishi Zheng 

b , 
Yong Xu 

c , David Zhang 

d 

a Department of Computer Science and Technology, Tongji University, Shanghai, China 
b School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China 
c Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, China 
d Biometrics Research Centre, Department of Computing, Hong Kong Polytechnic University, Hong Kong, China 

a r t i c l e i n f o 

Article history: 

Received 10 July 2017 

Revised 13 January 2018 

Accepted 28 January 2018 

Available online 2 February 2018 

Keywords: 

Person re-identification 

Maximal granularity structure descriptor 

Generalized multi-view discriminant 

analysis 

Representation consistency 

a b s t r a c t 

This paper proposes a novel descriptor called Maximal Granularity Structure Descriptor (MGSD) for fea- 

ture representation and an effective metric learning method called Generalized Multi-view Discriminant 

Analysis based on representation consistency (GMDA-RC) for person re-identification (Re-ID). The pro- 

posed descriptor of MGSD captures rich local structural information from overlapping macro-pixels in an 

image, analyzes the horizontal occurrence of multi-granularity and maximizes the occurrence to extract 

a robust representation for viewpoint changes. As a result, the proposed descriptor of MGSD can ob- 

tain rich person appearance whilst being robust against different condition changes. Besides, considering 

multi-view information, we present a new GMDA-RC for different views, inspired by the observation that 

different views share similar data structures. The proposed metric learning method of GMDA-RC seeks 

multiple discriminant common spaces for multiple views by jointly learning multiple view-specific lin- 

ear transforms. Finally, we evaluate the proposed method of (MGSD + GMDA-RC) on three publicly avail- 

able person Re-ID datasets: VIPeR, CUHK-01 and Wide Area Re-ID dataset (WARD). For the VIPeR and 

CUHK-01, the experimental results show that our method significantly outperforms the state-of-the-art 

methods, achieving the rank-1 matching rates of 67.09%, 70.61%, and the improvements of 17.41%, 5.34%, 

respectively. For the WARD, we consider different pairwise camera views (camera 1–2, camera 1–3, cam- 

era 2–3) and our method can achieve the rank-1 matching rates of 64.33%, 59.42%, 70.32%, increasing of 

5.68%, 11.04%, 9.06% compared with the state-of-the-art methods, respectively. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (Re-ID) is the task of recognizing pedes-

rians observed from non-overlapping camera views in a surveil-

ance system and it a challenging problem because of big intra-

lass variations in illumination, pose, viewpoint and occlusion [1,2] .

o address this problem, existing approaches mainly focus on de-

eloping effective feature representation methods which are robust

gainst the view/pose/illumination/background changes [3–26] , or

earning a distance metric [6–8] . The main development of person

e-ID have been shown in Table 1 . 

For feature representation, lots of models extract the low-level

ritical visual features (i.e. color [3–5] , texture [6,7] , structure
∗ Corresponding authors. 
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8–10] , etc.), and consider the rich information of pedestrian’s ap-

earance. However, these handcrafted features would been con-

trained by scenarios for person Re-ID. In practice, most of the

ppearance-based approaches would integrate multiple features, 

uch as ensemble of localized features [11] , local maximal occur-

ence representation [12] , salient match [13,14] , ensemble of in-

ariant features [15] , camera correlation aware feature augmenta-

ion [16] , kernel-based features [17] , etc. Meanwhile, the semantic

eatures [18–21] are also important for person Re-ID. Better yet,

eep learning is also a noteworthy method, exhibiting an excellent

erformance in learning representation of person Re-ID [20,22–26] .

hese handcrafted or learning based descriptors have made im-

ressive improvements over feature extraction, and advanced the

erson Re-ID research. Unfortunately, it is still extremely difficult

o extract a robust feature that effectively adapts to severe changes

nd misalignment across disjoint views. 

Another aspect of person Re-ID considers to design an effec-

ive metric learning model trying to seek a new discriminative

https://doi.org/10.1016/j.patcog.2018.01.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.01.033&domain=pdf
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mailto:wxktongji@163.com
mailto:dqmiao@tongji.edu.cn
https://doi.org/10.1016/j.patcog.2018.01.033
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Table 1 

The main development of person Re-ID. 

Author Year Approaches Remark 

Gray et al. [11] 2008 ELF Appearance 

Kostinger et al. [51] 2012 KISSME Metric 

Igor et al. [3] 2013 Color Invariants Appearance 

Zhao et al. [14] 2013 Salience Appearance 

Zheng et al. [27] 2013 RDC Metric 

Pedagadi et al. [28] 2013 LFDA Metric 

Yang et al. [4] 2014 Salient Color Name Appearance 

Xiong et al. [29] 2014 Kernel Metric 

Liao et al. [12] 2015 LOMO + XQDA Appearance/metric 

Shi et al. [18] 2015 Transfer Metric 

Li et al. [19] 2015 Attribute Appearance 

Ahmed et al. [36] 2015 Deep Learning Appearance/metric 

Paisitkriangkrai et al. [40] 2015 Rank Metric 

Matsukawa et al. [5] 2016 GOG Appearance 

Xiao et al. [22] 2016 Deep Learning Appearance 

Zhang et al. [30] 2016 Null Space Learning Metric 

Tao et al. [32] 2016 DR-KISS Metric 

Zheng et al. [33] 2016 Transfer Metric 

Peng et al. [34] 2016 Transfer Metric 

Yang et al. [53] 2016 LSSL Metric 

Zhao et.al [54] 2016 MLAPG Metric 

Zhang et al. [8] 2017 Structured Matching Appearance/metric 

Chen [16] 2017 CRAFT Appearance/metric 

Wang et al. [26] 2017 Deep Learning Appearance/metric 

Zhao et al. [31] 2017 Salience Metric 
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subspace for more good performance. Typical algorithms include

relative distance comparison (RDC) [27] , local fisher discriminant

analysis (LFDA) [28] , kernel-based metric [29] , cross-view quadratic

discriminant analysis (XQDA) [12] , MLAPG [54] , discriminative null

space [30] , saliency learning [31] , dual-regularized KISS (DR-KISS)

[32] , transfer learning [33,34] and deep learning model [35–39,43] ,

etc. In addition, many other kinds of methods try to address Re-ID

by ranking methods [40,41] . Although these metric-based methods

outperform the existing Re-ID benchmarks, they are nevertheless

limited by some of classical problems, such as the inconsistent dis-

tributions of multiple views and small sample size (SSS) for model

learning. 

For the multi-view learning, it has been utilized to solve various

computer visual tasks, such as image annotation [58] , image re-

trieval [60] and so on. In this paper, we design a novel robust fea-

ture representation called maximal granularity structure descriptor

(MGSD) and an efficient metric learning method called generalized

multi-view discriminant analysis with representation consistency

(GMDA-RC). More specifically, based on the information granularity

theory [42] and human visual attention mechanism [43] , we pre-

process the original images with multiple scales and orientations,

and obtain the multi-granularity feature maps. To uncover the in-

trinsic relationship of different features, we design a local crossing

coding method to capture salient features from a biologically in-

spired feature (BIF) magnitude image obtained by multiple Gabor

filters [44] . Then, we analyze the horizontal occurrence of the lo-

cal features and take advantage of MAX operator [12] to capture a

robust representation against viewpoint changes. Furthermore, to

learn an effective and robust distance or similarity function, we

propose a novel metric measuring method of GMDA-RC, which can

learn a low dimensional consistent discriminant subspaces from

multiple views [45–47,56–59] and we solve this problem as a clas-

sic generalized eigenvalue decomposition problem [48] . This pro-

cessing is shown in Fig. 1 . 

1.1. Motivation 

For person Re-ID, how to extract a robust feature and learn-

ing an optimal distance metric across camera views are impor-

tant problems. Existing handcrafted or learning methods have been
hown to be effective in improving the person Re-ID benchmarks,

et they have some drawbacks as follows:(1) The traditional de-

criptors could characterize the certainty of different features, but

ail for the uncertainty. However, fuzziness and uncertainty embed-

ing image is very important property for Re-ID from the view-

oint of human perception; (2) Most of the existing methods as-

ume that the distributions of multiple camera views is consistent.

owever, this assumption is one-sided because the important at-

ribute of each camera view is different in practice; (3) Most of

etric learning method suffer from the small sample size (SSS)

roblem. 

To address the above-mentioned problems, we propose a novel

aximal granularity structure descriptor (GMSD) from the view of

eature extraction and a generalized multi-view discriminant anal-

sis with representation consistency (GMDA-RC) from the view of

etric learning for person Re-ID. 

.2. Contribution 

The main contributions of our work are summarized as the fol-

owing three points: 

1. We introduce a new maximal granularity structure descriptor

(MGSD) which extracts local salient features to describe pedes-

trian’s appearance. To make a stable representation against

viewpoint changes, we exploit a novel strategy of local maxi-

mal crossing coding to combine colors, textures and colors dif-

ferences in color and orientation blocks, which not only con-

siders the local features, but also the spatial relationships from

different scales and texture orientations. 

2. We propose a novel similarity measure to seek a low dimen-

sional consistent discriminant subspace by generalized multi-

view discriminant analysis with representation consistency

(GMDA-RC), solved by the generalized eigenvalue decomposi-

tion. For the representation consistency, we minimize the error

of construction form view-1 to view-2 and address it by least

square method. 

3. Benefitting from the consideration of feature representation and

metric learning, the proposed method is shown to be effective
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Rank results
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Fig. 1. The processing of person Re-ID based on the proposed method of MGSD + GMDA-RC: a maximal granularity structure descriptor (MGSD) for feature representation 

and a generalized multi-view consistent discriminant metric learning method (GMDA-RC) for metric learning. 
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and efficient through person Re-ID experiments on three public

datasets. 

. Brief review of related work 

For the many mathematical notations, a list with brief descrip-

ion is showed as follows. 

ψ μ, θ( x , y ) Gabor filters 

G μ( x , y ) Average of G μ,θ ( x, y ) 

B i Biologically inspired feature (BIF) magnitude images 

G C i ( x , y ) Granularity color images 

G θ′ 
i ( x , y ) Granularity orientation images 

S W , S B , S C , S M Within-class variations, between-class variations, canonical 

correlation matrix, representation-consistency scatter 

matrix 

S jr , D jr , C jr , M jr Two-view within-class scatter matrixes, two-view 

between-class scatter matrix, two-view canonical 

correlation matrix, two-view representation-consistency 

scatter matrix 

Z jr Reconstruction coefficient matrix 

E jr Noise matrix 

X j , X r The same person with view- j and view- r 

W jr Project matrix from view- j to view- r 

x i jk ∈ R d The k th person image form the j th view of the i th person 

of d dimension 

c, v The number of person, the number of views 

n i j The number of person images from the j th view of i th 

person 

.1. Color difference histogram 

The color different histogram (CDH) [43] algorithm has been

xploited for image feature representation, analyzing the percep-

ually uniform color difference between two points under different

ackgrounds with color and edge orientations. Specifically, CDH fo-

uses on these salient points, which have same values of color and

exture orientation after granularity and encoding. Moreover, these

oints are apart from the center point with d and located on the

oundary of rectangle, shown in Fig. 2 . For CDH, only these points

ith same texture orientations and color index values are utilized

o calculate the colors difference histogram. Then, the histogram

nformation is obtained to describe the difference of colors with

hree channels of original image, considering the feature of color,

rientation and the spatial association between the pixels and their

 -adjacent neighborhoods. As a result, it is robust to the changes

f illumination and viewpoint. 

For the color image, the center point is P C 0 and its d -adjacent

eighborhoods are P , P , … , P . Similarly, for the texture image,
c 1 c 2 c 8 
he center point is P T 0 and its d -adjacent neighborhoods are P t 1 , P t 2 ,

, P t 8 . Based on the theory of CDH, the color image considers

he points of P c 1 , P c 7 which have the same texture value and the

exture image considers the point of P t 4 , P t 8 which have the same

olor value. 

.2. Classic local discriminant analysis 

For the discriminant analysis, S W 

and S B are two covariance ma-

rices describing two classes of variations: the within-class varia-

ions and the between-class variations [12] . Given a pair of sam-

les x i and x j , x i , x j ∈ R P × P , the S W 

and S B could be obtained by:

 W 

= 

1 ∣∣Å∣∣
∑ 

x i , x j ∈ Å

(
x i − x j 

)(
x i − x j 

)T 
(1) 

 B = 

1 

| B | 
∑ 

x i , x j ∈B 

(
x i − x j 

)(
x i − x j 

)T 
(2) 

here Å is the similar sample pairs and B is the dissimilar sample 

airs. 

To maximize the scatter matrix of between-class and reduce the

ifferences of within-class, the traditional local discriminant anal-

sis would be interested in estimating K ≤ k column vectors, and

btain the project matrix of W = [ w 1 , w 2 , . . . , w k ] ∈ R p×k . It defines

he objective optimization function as follows: 

 ( W ) = arg max 
W 

trace 
(
W 

T S B W 

)
trace 

(
W 

T S W 

W 

) (3) 

The maximization of J ( W ) is equivalent to 

 ( W ) = arg max 
W 

t race 
(
W 

T S B W 

)
, s.t . W 

T S W 

W = I (4)

hich can be derived by eigen-decomposition of S −1 
W 

S B . 

.3. Canonical correlation analysis 

Canonical correlation analysis (CCA) [45] is an approach to cor-

elating linear relationships between two different views. It aims to

btain two projection directions w x and w y for each view and max-

mize the correlation between the two transformed feature sets in

 common subspace. In general, the optimal objective function is

efined as follows: 

( w x , w y ) = arg max 
w x , w y 

w 

T 
x C xy w y 

 . t . w 

T 
x C xx w x = 1 , w 

T 
y C yy w y = 1 

(5) 
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Fig. 2. The processing of Color Difference Histogram (CDH) with d = 1. 
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 xy = 

1 

n 

X Y T , C xx = 

1 

n 

X X 

T , C yy = 

1 

n 

Y Y T (6)

where the term (1/ n ) in Eq. (6) can be canceled out when calculat-

ing the correlation coefficient. The Eq. (6) can be transformed into

a generalized eigenvalue problem as [
0 C xy 

C yx 0 

][
w x 

w y 

]
= λ

[
C xx 0 

0 C yy 

][
w x 

w y 

]
(7)

where 0 represents the appropriate number of zero elements. 

After surveying related research works, we are motivated to ad-

vocate a maximal granularity structure descriptor (GMSD) and a

generalized multi-view discriminant analysis with representation

consistency (GMDA-RC) for person Re-ID. 

3. Maximal granularity structure descriptor 

Psychophysical and neurobiological studies have shown that the

color and texture, containing rich visual information, play criti-

cal roles for human visual perception, and have been widely uti-

lized for image feature representation [43] . However, the illumina-

tion conditions and viewpoint changes would lead to vary largely

differences of color and texture for the same person. For exam-

ple, Fig. 16 shows the same person images from Wide Area Re-

Identification (WARD) dataset [49] and the same person may vary

largely from different camera views. In this section, we propose a

robust descriptor (MGSD) to represent appearance of person. 

3.1. The idea of the proposed algorithm 

To improve the robustness to illumination changes, we apply

multiple Gabor filters, which adapt to the habit of observing nat-

ural scene with human eyes to preprocess the original images. It

is insensitive to illumination changes by analyzing color and tex-

ture feature from the multi-scale and multi-orientation. Further-

more, we exploit MAX operator to fuse these images and utilize

a sliding window to capture local color difference histogram that

considers the salient color and texture features. Moreover, we ana-

lyze the horizontal occurrence of local features [12] , and maximize

the occurrence to make a stable representation against viewpoint

and illumination changes. The processes of the proposed method

MGSD is shown in Fig. 3 . 

3.2. Pre-processing with Gabor filters and MAX operator 

Gabor filters could reflect the features of the local regions and

represent the images by different granularities with multi-scale
nd multi-orientation [44] . The pre-processing of images with mul-

iple Gabor filters would bring more critical texture information

ith multi-granularity into our feature representation. To retain

ore color information, the pre-processing would deal with the

hree channels ( HSV ) of images respectively, rather than a gray im-

ge. Then, we define the multiple Gabor filters as follows: 

 μ,θ ( x, y ) = 

μ2 

σ 2 
e −

μ2 ( x 2 + y 2 ) 
2 σ2 

(
e iμ( xcosθ+ ysinθ ) − e −

σ2 

2 

)
(8)

here x and y are the coordinate positions in an image, σ is the

tandard deviation of the Gaussian function, μ represents the

cale which is granulated into 16 different scales, and θ defines

he orientation which is granulated into 8 orientations. 

We compute the original image I ( x, y ) with multiple Gabor fil-

ers and obtain the G μ, θ ( x, y ), as follows: 

 μ,θ ( x, y ) = I ( x, y ) × ψ μ,θ ( x, y ) (9)

Then, we extract the averaged feature maps with different ori-

ntations and obtain 16-scale feature maps, defined as follows: 

 μ( x, y ) = 

1 

8 

8 ∑ 

v =1 

G μ,θ ( x, y ) (10)

here the G μ( x, y ) is defined as the average of G μ, θ ( x, y ) and the

etailed processing is shown in Fig. 4 . Furthermore, we divide the

6-scale feature maps G μ( x, y ) into 8 groups and each group in-

ludes two neighborhood scale images. Then we take advantage of

AX pooling operator to obtain the biologically inspired feature

BIF) magnitude images in every group, defined as follows, 

 i = max ( G 2 i −1 ( x, y ) , G 2 i ( x, y ) ) , i ∈ [ 1 , 2 , . . . , 8 ] (11)

Fig. 5 shows pairs of images and BIF Magnitude Images for an

mage with three channels of HSV color space. 

.3. Maximal granularity structure descriptor 

Under different cameras, pedestrians usually appear in differ-

nt viewpoints that would result in matching same pedestrian

ifficultly. To address this problem, a novel maximal granularity

tructure descriptor (MGSD) is proposed, which combines color in-

ormation, texture orientation and spatial correlation in local re-

ions. In the proposed method, we granulate the HSV color space

nto 4 × 4 × 4 = 64-bins with BIF magnitude images and obtain the

ranularity color images G C i ( x, y ) ∈ [ 1 , 2 , . . . , 64 ] , i ∈ [ 1 , 2 , . . . , 8 ]

o reduce the dimensionality of features. Besides, we granulate

he color texture image into 36-bins with uniform step and ob-

ain the granularity texture images Gθ ′ 
i 
( x, y ) ∈ [ 1 , 2 , . . . , 36 ] , i ∈

 1 , 2 , . . . , 8 ] . 
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Fig. 4. The framework of pre-processing via multiple Gabor filters with 16 scales and averaged with 8 orientations. 

 

h  

c  

s

h
Next, we consider the center pixel and its d -adjacent neighbor-

oods, and extract the color difference histogram (CDH) [43] that

onsiders the salient points with same color value or texture value,

hown in Fig. 6 . It is defined as follows: 
 

( i ) 
color 

( G C i ( x , y ) ) 

= 

⎧ ⎨ 

⎩ 

∑ ∑ 

√ 

( �H i ) 
2 + ( �S i ) 

2 + ( �V i ) 
2 

where G θ ′ 
i ( x, y ) = G θ ′ 

i 

(
x ′ , y ′ 

)
; max 

(| x − x ′ | , | y − y ′ | ) = D i 

(12) 
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Fig. 5. The pre-processing with MAX pooling operator and we can obtain 8-group feature maps from 16-scale feature maps. 

Hcolor(46)

Hori(10)

Fig. 6. The processing of local cross encoding: we consider the salient points inspired by color difference histogram, which captures the texture points with same color value 

or the color points with same texture value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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( i ) 
ori 

(
Gθ ′ 

i ( x, y ) 
)

= 

⎧ ⎨ 

⎩ 

∑ ∑ 

√ 

( �H i ) 
2 + ( �S i ) 

2 + ( �V i ) 
2 

where G C i ( x, y ) = G C i 
(
x ′ , y ′ 

)
; max 

(| x − x ′ | , | y − y ′ | ) = D i 

(13)

where ( x, y ) and ( x ′ , y ′ ) describe the coordinate positions of the

points in images. D i defines the distance between a center point

and its neighborhoods. 

In order to capture more minutiae features, we exploit a slid-

ing window to capture CDH descriptor in the local regions and

consider it as the occurrence probability of one pattern. Then, we

choose the maximal values of CDH histograms captured from all

local regions at the same horizontal location and obtain the fea-

ture vector from the color image C (x, y) and texture orientation
i 
mage θ ′ 
i 
( x, y ) , defined as 

 = 

[ 
h 

( i,m ) 
color 

( 0 ) , h 

( i,m ) 
color 

( 1 ) , . . . , h 

( i,m ) 
color 

( 63 ) , h 

( i,m ) 
ori ( 0 ) , 

h 

( i,m ) 
ori ( 1 ) , . . . , h 

( i,m ) 
ori ( 35 ) 

] 
(14)

here m is the number of rows in the images. 

Furthermore, we capture the granularity color histogram in HSV

olor space and the scale invariant local ternary pattern (SILTP)

12] from the local regions, and combine them defined as the max-

mal granularity structure descriptor (MGSD) to represent the per-

on images. 

For multi-granularity person images ( GC i (x, y) and θ ′ 
i 
( x, y ) ) with

abor filters and MAX operator, we can capture the final feature

ector as follows, 

GSD = 

[ 
MGSD 

( 1 ) 
, MGSD 

( 2 ) 
, . . . , MGSD 

( i ) 
, . . . , MGSD 

( 8 ) 
] 

(15)
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Generalized Multi-view Discriminant Analysis (GMDA-RC)

View 1 View 2 View 3

w1 w2 w3

Multi-view with Representation-consistency

Fig. 7. The process of generalized multi-view discriminant analysis (GMDA-RC) which considers multiple views and capture multiple project matrices. 
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. Generalized multi-view discriminant analysis with 

epresentation consistency 

In this section, we firstly introduce a novel metric learn-

ng method based on the formulation of multi-view discriminant

nalysis and multi-view canonical correlation analysis, and then

resent its analytic solution, defined as Generalized Multi-view

iscriminant Analysis with Representation Consistency (GMDA- 

C). It can learn multiple view discriminant subspaces W =
 w 

∗
1 , w 

∗
2 , . . . , w 

∗
v } ∈ R d×r with representation consistency and is dif-

erent from the general framework achieving a discriminative com-

on subspace for all views [45–47,58,59] . Then, we describe its

ormulation and analytic solution. Note that, the proposed GMDA-

C considers view label information in the multi-view problem of

erson Re-ID and solve it analytically through generalized eigen-

alue decomposition. 

.1. Multi-view discriminant analysis 

As shown in Fig. 7 , our proposed GMDA-RC attempts to

nd v linear transforms w 

∗
1 
, w 

∗
2 
, . . . , w 

∗
v that can respectively

roject the person samples from v different views to an em-

edding discriminative space, where the between-class variants

re maximized and the within-class variants are minimized. In

rder to consider the view label information, we define X =
 x i jk | i = 1 , 2 , . . . , c; j = 1 , 2 , . . . , v ; k = 1 , 2 , . . . , n i j } as the set of per-

on images, where x ijk ∈ R d is the k th person image form the j th

iew of the i th person of d dimension, c is the number of per-

on, v is the number of views, n ij is the number of person images

rom the j th view of i th person. Then, we optimize multiple dis-

inct liner transforms and obtain the two-view within-class scatter

atrixes ( S jr ) [47] , considering view label information, defined as

ollows: 

 jr = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

c ∑ 

i =1 

( 

n i j ∑ 

k =1 

x i jk x 
T 
i jk −

n i j n i j 

n i 

μi j μ
T 
i j 

) 

, j = r 

−
c ∑ 

i =1 

n i j n ir 

n i 

μi j μ
T 
ir , otherwise 

(16) 

here μi j = 

1 
n i j 

∑ n i j 

k =1 
x i jk is defined as the mean of i th person’s im-

ges with j th view and n is the number of i th person’s images. 
i 
For the multi-view within-class scatter matrix in the common

pace, it can be reformulated as follows: 

 W 

= 

[
w 

T 
1 , w 

T 
2 , . . . , w 

T 
v 
]
⎛ 

⎜ ⎜ ⎝ 

S 11 . . . S 1 v 

. . . 
. . . 

. . . 

S v 1 . . . S vv 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 1 

w 2 

. . . 

w v 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= W 

T SW (17) 

Similarly, the two-view between-class scatter matrix can be de-

ned as follows: 

 jr = 

( 

c ∑ 

i =1 

n i j n ir 

n i 

μi j μ
T 
ir 

) 

− 1 

n 

( 

c ∑ 

i =1 

n i j μi j 

) ( 

c ∑ 

i =1 

n ir μir 

) T 

(18) 

And we can obtain the multi-view between-class scatter in the

ommon space as follows: 

 D = 

[
w 

T 
1 , w 

T 
2 , . . . , w 

T 
v 
]
⎛ 

⎜ ⎜ ⎝ 

D 11 . . . D 1 v 

. . . 
. . . 

. . . 

D v 1 . . . D vv 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 1 

w 2 

. . . 

w v 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= W 

T DW (19) 

Combining with Eq. (3) , we can reformulate the multi-view dis-

riminant subspace as follows: 

( w 1 , w 2 , . . . , w v ) = arg max 
w 1 , ... , w v 

trace 
(
W 

T DW 

)
trace 

(
W 

T SW 

) (20) 

hich can be solved analytically through general eigenvalue de-

omposition. 

.2. Multi-view canonical correlation analysis 

Different from original multi-view canonical correlation analy-

is (MCCA) [44] , we combine the two-view canonical correlation

nalysis and define the total correlation in the common space as

elow: 

 C = 

[
w 

T 
1 , w 

T 
2 , . . . , w 

T 
v 
]
⎛ 

⎜ ⎜ ⎝ 

C 11 . . . C 1 v 

. . . 
. . . 

. . . 

C v 1 . . . C vv 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 1 

w 2 

. . . 

w v 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= W 

T CW (21) 

here C ij is defined as Eq. (6) , i and j represent two different

iews. Combining the Eq. (20) , we define the generalized multi-
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Algorithm 1 The proposed method of MGSD. 

Input: dataset X 1 , X 2 , . . . , X m with view-1, view-2, … ,view- m . 

Begin: 

(1) Pre-processing via multiple Gabor filters with the 16 scales and 8 

orientations by Eqs. (8) and (9) . 

(2) Extract the averaged feature with different orientations and obtain 16-scale 

feature maps ( G μ( x , y )) by Eq. (10) . 

(3) Obtain the biologically inspired feature (BIF) magnitude images ( B i ) by 

Eq. (11) . 

(4) Extract the color difference histogram (CDH) by Eq. (12) . 

(5) Capture the local maximal cross encoding histogram. 

(6) Combine the descriptor of local maximal cross encoding histogram, HSV 

color histogram and SILTP and define it as MGSD. 

(7) Obtain final feature vector : 

MGSD = [ MGSD (1) 
h 

, MGSD (2) 
h 

, . . . , MGSD (i ) 
h 

, . . . , MGSD (8) 
h 

] . 

End 

Output: MGSD 
view analysis as follows: 

( w 1 , w 2 , . . . , w v ) = arg max 
w 1 , w 2 , ... , w v 

t race 
(
W 

T DW 

)
+ αt race 

(
W 

T CW 

)
trace 

(
W 

T SW 

)
(22)

where α is the balance parameter. 

4.3. Multi-view representation consistency 

For the same person with different camera views, denoted as

X j ( j = 1 ) and X r ( r = 2 ) respectively, considering the same distri-

butions we can obtain the optimal function based on the consis-

tency of representation as follows: 

X j = X r Z jr + E jr (23)

where Z jr is defined as the reconstruction coefficient matrix which

can captures the structure of samples. E jr is defined as the noise

matrix. However, it cannot ensure the consistency of distributions

with different views. Thus, we apply the project matrix ( W jr ) which

is defined the flipping form view- j to view- r , to seek a common

subspace to minimize the difference of two views. Then, we can

obtain the optimal function as follows: 

min 

W jr 

∥∥W 

T 
jr M jr W jr 

∥∥2 

2 
(24)

M jr = 

(
X j − X r Z jr − E jr 

)(
X j − X r Z jr − E jr 

)T 
(25)

where j,r represent two-different views, X j , X r represent the same

person with view- j and view- r. W jr is defined as the project

matrix from view- j to view- r. M jr is defined as the two-view

representation-consistency scatter matrix for same person with

view- j and view- r . 

For the Eq. (23) , we define K jr = [ Z jr ; E jr ] and X ′ r = [ X r ; 1 ] . In-

spired by the least square method, we can obtain the optimal func-

tion of 1 
2 ‖ X ′ r K jr − X j ‖ 2 and solve it as ⎧ ⎨ 

⎩ 

X j = X 

′ 
r K jr 

K jr = 

(
X 

′ 
r 

T 
X 

′ 
r 

)−1 

X 

′ 
r 

T 
X j 

(26)

The two-view representation-consistency scatter matrix M jr is

re-defined as follows, 

M jr = 

(
X j − X 

′ 
r K jr 

)(
X j − X 

′ 
r K jr 

)T 
(27)

Then, we can reach the following multi-view representation-

consistency scatter matrix: 

S M 

= 

[
w 

T 
1 , w 

T 
2 , . . . , w 

T 
v 
]
⎛ 

⎜ ⎜ ⎝ 

M 11 . . . M 1 v 

. . . 
. . . 

. . . 

M v 1 . . . M vv 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 1 

w 2 

. . . 

w v 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= W 

T MW 

(28)

Furthermore, combining with Eq. (22) , we can define the re-

semblance as view-consistency for multi-view problem, modeled

by the following term: 

( w 1 , w 2 , . . . , w v ) = arg max 
w 1 , w 2 , ... , w v 

t race 
(
W 

T DW 

)
+ αt race 

(
W 

T CW 

)
t race 

(
W 

T SW 

)
+ βt race 

(
W 

T MW 

)
(29)

where α, β are the balance parameters. 

Through optimizing Eq. (29) , the correlation between different

views, the discrimination of each view can be maximized simulta-

neously, and the consistency of representation can been ensured to
inimize the differences of distributions with multiple views. We

enote this extended multi-view discriminant analysis and multi-

iew canonical correlation analysis with representation consistency

s generalized multi-view discriminant analysis with representa-

ion consistency (GMDA-RC). 

The objective of GMDA-RC in Eq. (29) can been rewritten as a

race ratio form: 

( w 1 , w 2 , . . . , w c) = arg max 
w 1 , w 2 , ... , w c 

trace 
(
W 

T ( D + αC ) W 

)
trace 

(
W 

T ( S + βM ) W 

) (30)

Differing from the conventional discriminant analysis described

s Eq. (4) , the proposed method i.e. GMDA-RC fuses the multi-view

onsistency described by matrix M and multi-view canonical corre-

ation described by matrix C . It can lead to a more robust solution

or SVD and is against the changes of multiple views. Evidently,

q. (30) can also be solved analytically after relaxing to the ratio

race problem as Eq. (4) . That is, the corresponding eigenvector of

( S + βM ) −1 ( D + αC ) with SVD is the solution of the objective func-

ion. For brevity, more details on the solution can refer to XQDA

12] 

.4. Distance function for GMDA-RC 

In this paper, we extern the KISSME approaches to multi-view

etric learning and consider the multi-view subspace of W =
 w i } ∈ R d×r , where i represents one view, d represents the dimen-

ionality of original features and r represents the dimensionality of

ubspace. Then, we define the distance function for GMDA-RC as

ollows: 

 GMDA −RC = 

(
w 

T 
p x p − w 

T 
p x q 
)T 

w p ( D pq + αC pq − S pq − βM pq ) 

× w 

T 
p 

(
w 

T 
p x p − w 

T 
p x q 
)

+ 

(
w 

T 
q x p − w 

T 
q x q 
)T 

w q 

× ( D qp + αC qp − S qp − βM qp ) w 

T 
q 

(
w 

T 
q x p − w 

T 
q x q 
)

(28)

here x p , x q represent the samples with view- p and view -q, w p ,

 q ∈ W , D pq represents the two-view between-class scatter matrix

ith view- p and view -q, C pq represents the two-view canonical

orrelation matrix with view- p and view -q , S pq represents the two-

iew within-class scatter matrix with view- p and view -q , and M pq 

epresents the representation-consistency scatter matrix. 

The process of our proposed method (MGSD + GMDA-RC) is

hown as follows: 
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Algorithm 2 The proposed method of GMDA-RC. 

Input: feature matrices X 1 , X 2 , . . . , X m with view-1, view-2, … ,view- m , 

parameters α, β. 

Begin: 

(1) Obtain the two-view within-class scatter matrixes ( S jr ) by Eq. (16) . 

(2) Obtain the multi-view within-class scatter matrix S W 

by Eq. (17) . 

(3) Obtain the two-view between-class scatter matrix D jr by Eq. (18) . 

(4) Obtain the multi-view between-class scatter S D by Eq. (19) . 

(5) Obtain the two-view canonical correlation analysis C jr by Eq. (6) . 

(6) Obtain the multi-view canonical correlation analysis S C by Eq. (21) . 

(7) Obtain the two-view reconstruction coefficient K jr by Eq. (26) . 

(8) Obtain the two-view representation-consistency scatter matrix M jr by 

Eq. (25) . 

(9) Obtain the multi-view representation-consistency scatter matrix S M by 

Eq. (28) . 

(10) Obtain the final optimal function of Eq. (29) . 

(11) Solve Eq. (29) analytically after relaxing to the ratio trace problem. 

End 

Output: w 1 , w 2 , . . . , w m 
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.5. Complexity analysis 

In our proposed approach, we utilize multiple Gabor filters and

apture the local maximal cross encoding histogram. For a region,

e can obtain a 100-dimensionality (64-color and 36-texture) his-

ogram. Thus, the dimensionality of proposed descriptor (MGSD) is

00 × n , where n is the number of local regions in a person im-

ge. For example, we take advantage of overlapping slide window

ith size of 16 × 16 to capture local maximal cross encoding his-

ogram on the horizontal direction. The step of slide window is

enoted as 8. Thus, we can obtain that the final dimensionality of

eature vector is 15 × 100 = 1500 from a person image with the size

f 128 × 48. Combining the multiple Gabor filters, we can obtain

he dimensionality of MGSD is 1500 × 8 = 12,000. For the metric

earning method of GMDA-RC, the main computational complexity

s correlative to the process of singular value decomposition (SVD),

efined as t svd ( d MGSD × m ), where m is the number of views. 

. Experiments 

In this section, we show the experiments to evaluate our ap-

roach, providing comparisons with the state-of-the-art methods

n three publicly available person Re-ID datasets: VIPeR [5] , CUHK-

1 [12] and Wide Area Re-Identification Dataset (WARD) [49] ,
Fig. 8. Examples of the person images i
hich cover different aspects and challenges for person Re-ID. In

ur experiments, we randomly choose all images of p persons

classes) to set up the test set and the rest is test set including

 gallery set and a probe set. The gallery set consists of one image

or each person and the remaining images are defined as the probe

et. This procedure is repeated 10 times. 

For evaluation, we utilize Cumulative Matching Characteristic

CMC) curve [50] as the standard performance measurements. The

MC curve represents the expectation of the probe image correct

atch at rank r against the p gallery images and the rank-1 match-

ng rate is thus the correct matching, recognition rate. In practice,

 high rank-1 matching rate is critical, also, a small r value is impor-

ant because the top matched images will normally be verified by

 human operator. In our experiments, we compared the proposed

ethod with several state-of-the-art methods. 

In our model, the parameters includes mainly α, β and we ob-

ain the optimal parameters through a method of adjusting one pa-

ameter while fixing other parameters [55] . 

.1. Experiments on VIPeR dataset 

The VIPeR dataset is composed of 1264 images of 632 pedes-

rians captured by a pair of cameras in an outdoor environment,

ith two images of 128 × 48 pixels for every pedestrian. Example

mages are shown in Fig. 8 . The images are taken from horizon-

al viewpoints but widely different directions. In this dataset, the

hange of large variations in background, illumination, and view-

oint are the main problems for person Re-ID. In our experiments,

e randomly choose 316 pedestrians from all images as training

et and the rest is the test set, and repeat the procedure 10 times

o get an average performance. 

.1.1. Comparison of the state-of-the-art methods 

We compared the proposed method ( MGSD + GMDA-RC ) and

 Fusion of Features + GMDA-RC ) with the state-of-the-art meth-

ds including CRAFT [16] , GOG [5] , LSSL [53] , LOMO + MLAPG [54] ,

OMO + XQDA [12] , kLFDA [29] , MFA [29] , KISSME [51] , SVMML

52] and LFDA [28] and reported the results in the Fig. 9 and

able 2 . From Fig. 9 , we can see that the proposed method of

GSD + GMDA-RC achieves a recognition rate of 44.87% at rank-

, which can outperform most of the compared methods. Specif-

cally, the Fusion of Features (i.e. LOMO, GOG, CRAFT) + GMDA-RC
n VIPeR dataset for person Re-ID. 
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Fig. 9. The CMC curves and rank-1 identification rates on the VIPeR dataset ( P = 316 ), by comparing the state-of-the-art methods, including MGSD + GOG + GMDA-RC, 

MGSD + LOMO + GMDA-RC, MGSD + CRAFT + GMDA-RC, MGSD + GMDA-RC, CRAFT, GOG, LOMO + XQDA, LSSL, rPCCA, kLFDA, MFA, KISSME, SVMML and LFDA. 

Table 2 

The rank1, 5,10,15,20 matching rate (%) with the methods of MGSD + GOG + GMDA-RC, MGSD + LOMO + GMDA-RC, MGSD + CRAFT + GMDA-RC, 

MGSD + GMDA-RC, CRAFT, GOG, LSSL, LOMO + MLAPG, LOMO + XQDA , kLFDA , MFA , KISSME, SVMML and LFDA on the VIPeR dataset with p = 316. 

(The bold data is obtained by our methods). 

Method Rank = 1 Rank = 5 Rank = 10 Rank = 15 Rank = 20 

MGSD + CRAFT + GMDA-RC 67.09 91.33 96.23 98.23 98.86 

MGSD + GOG + GMDA-RC 60.54 86.58 93.61 96.68 98.20 

MGSD + LOMO + GMDA-RC 55.54 83.70 92.25 95.89 97.37 

MGSD + GMDA-RC 44.87 75.25 86.42 91.23 93.83 

GOG + XQDA 4 9.6 8 79.72 88.67 92.50 94.53 

CRAFT + XQDA 47.82 77.53 87.78 92.06 94.84 

LSSL 47.86 78.03 87.63 91.84 94.05 

LOMO + MLAPG 39.46 70.04 82.41 88.83 92.84 

LOMO + XQDA 40.00 68.13 80.51 87.37 91.08 

kLFDA 22.17 47.23 60.27 68.96 76.01 

MFA 20.46 48.97 63.35 73.05 78.15 

KISSME 22.53 49.57 64.11 71.79 76.08 

SVMML 25.41 54.25 70.28 78.72 83.50 

LFDA 18.34 44.64 57.25 66.66 73.96 
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achieves obvious improvements of ( 10.86%, 17.41%, 5.68%) com-

pared with the best matching rate of (4 9.6 8%, GOG) at rank-1. As

shown in Table 2 , the recognition performance of our approach

( Fusion of Features + GMDA-RC ) is also superior obviously to that

of others at rank-5, 10, 20. The intrinsic reasons for significant im-

provement are as follows. Firstly, we analysis person images from

different scales and orientations, and apply MAX operator to ex-

tract more salient features which are more conducive to handle

illumination variants. Secondly, we capture a local structure and

maximize the horizontal occurrence of local features. It is much

more stable and effective for the obvious changes of viewpoint.

Thirdly, we seek the rich multi-view discriminant information em-

bedded in the person images by maximizing the inter-class vari-

ants and minimizing the intra-class variants, considering the multi-

view canonical correlation analysis and representation consistency.

With these advantages, the proposed method performs better than

other methods for person Re-ID. 

5.1.2. Comparison of different features 

We compared the proposed MGSD with other features (LOMO

[9] , ELF16 [11] , FFN4096 [23] , KCCA [17] , SCNCD [4] ), resulting

in the CMC curves and rank-1 matching rates, shown in Fig. 10 .

For consistency, in the following experiments we utilize the met-

ric learning method of XQDA [12] and GMDA-RC to measure the

similarity of the different f eatures. From Fig. 10 (a), we can see
hat the proposed descriptor of MGSD, achieving the match rate of

4.18% with the metric learning method of XQDA, outperforms the

ther existing descriptors, increasing of 5.18% compared with the

ethod of LOMO + XQDA (39.00%). Furthermore, Fig. 10 (b) shows

he performance improvement with the proposed metric method

f GMDA-RC, achieving the matching rate of 44.87%, and the

ethod of MGSD + GMDA-RC is more significant for person Re-ID.

ince these kinds of descriptors are similar in fusing color and tex-

ure information, the improvement made by the proposed descrip-

or of MGSD is mainly due to the specific consideration of minu-

iae features, which handle the large changes of illumination and

iewpoint. 

.1.3. Comparison of metric learning algorithms 

We evaluated the proposed GMDA-RC algorithm and sev-

ral metric learning algorithms, including l 1 − norm distance [27] ,

ISSME [51] , kLFDA [29] and XQDA [12] , with the same MGSD fea-

ure. For the compared algorithms, PCA was first applied to reduce

he dimensionality of features. The result of Cumulative Matching

haracteristic (CMC) curves is shown in Fig. 11 and we can see that

he proposed method (MGSD + GMDA-RC), achieving the match rate

f 44.87%, which does better than the other metric learning algo-

ithms, with the accuracy gain reaching 0.69% over the best ob-

ained by (MGSD + XQDA). This indicates that the method of GMDA-
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Fig. 10. The CMC curves and rank-1 identification rates on the VIPeR dataset ( P = 316 ), by comparing the proposed descriptors of MGSD and MGSD + GOG to four available 

features including LOMO, KCCA, FFN4096 and ELF16, utilizing the different metric learning methods (XQDA, GMDA-RC). 

Fig. 11. The CMC curves and rank-1 identification rates on the VIPeR dataset 

( P = 316 ), by comparing the proposed descriptor of MGSD with GMDA-RC to four 

available metric learning methods, including l 1 − norm distance, kLFDA and XQDA. 
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Fig. 12. The CMC curves and rank-1 identification rates of MGSD + GMDA-RC on dif- 

ferent color spaces on the VIPeR dataset ( p = 316 ). 
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C successfully learns multi-view discriminant subspaces as well

s an effective metric. 

.1.4. Comparison of different color spaces 

Meanwhile, we compare our approach MGSD + GMDA-RC on

ifferent color spaces ( HSV, RGB, L ∗a ∗b ∗, Ycbcr ) and the result

s shown in Fig. 12 . Obviously, in terms of person Re-ID, the

GSD + GMDA-RC on HSV color space achieving the rank-1 match-

ng rate of 44.87%, is superior to others with increasing of 2.64%. It

s owing to that it contains multiple various channels that repre-

ent the images with multiple aspects (e.g. Hue, Saturation, Value)

orm different granularities. 

.1.5. Comparison of different parameters selection 

In this experiment, we compare the performances with differ-

nt parameters and describe the method of parameters selection.

n our model, the parameters include mainly α and β in the pro-

osed method of GMDA-RC. We provide the results of our model

ith different parameters at rank-1 in Fig. 13 . As we can see in

his figure, these parameters are not sensitive, performing the best
ith a small change for person Re-ID. In our model, we obtain the

ptimal parameters through a method of adjusting one parame-

er while fixing other parameters, and set the values of α and β
s 0.04 and 0.3 respectively. Note that, when α = 0 and β = 0 . 3 ,

he proposed method of GMDA-RC only considers the influence of

ulti-view Representation Consistency ( M ), reaching the matching

ate of 40.96% at rank-1. When α = 0 . 04 and β = 0 , the proposed

ethod of GMDA-RC only considers the influence of Multi-view

anonical correlation analysis ( C ), reaching the matching rate of

0.32% at rank-1. 

.2. Experiments on CUHK-01 dataset 

The CUHK-01 dataset contains 971 persons and 3884 images.

ach person has two corresponding images from two different

amera views, adding up to four in total. Camera A captures two

edestrian images from the frontal or back view, while camera

 captures two from the side view. Meanwhile, the images in

his dataset are of high resolution. All images are normalized to

0 × 160 pixels. In this dataset, the main problem for person Re-ID

s the large scale changes in camera view, as shown in Fig. 14 . Note
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α = 0,0.01,0.02,…,0.1, β = 0.3 β = 0,0.1,0.2,…,1.0, α = 0.04

Fig. 13. The performance comparison with different parameters at rank-1. 

Fig. 14. Examples of person Re-ID in CUHK-01 dataset. 
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that we randomly choose 485 persons from all images for training

and 486 persons for testing, and randomly select only one image

from each person for the gallery set and the rest is the probe set. 

We compared our proposed method (MGSD + GMDA-RC)

with the state-of-the-art methods, including GOG + XQDA [5] ,

LOMO + MLAPG [54] , LOMO + XQDA [12] , FFN4096 + XQDA [23] ,

kLFDA [29] , MFA [29] , KISSME [51] , SVMML [52] and LFDA [28] .

The experimental results are shown in Fig. 15 and Table 3 .

From the experimental results, we can see that the proposed

method significantly outperforms other methods. Besides, it is

to be observed that the matching rate of the proposed method

(MGSD + GMDA-RC) at rank-1 is up to 70.67%, which exceeds

current best result of GOG + XQDA by a margin of 5.34%. And the

method of MGSD + CRAFT + GMDA-RC can achieve the best perfor-

mance of 75.69% at rank-1. Moreover, the CMC curve also reports

that the proposed MGSD + GMDA-RC has a better performance than
 i  
ther approaches at rank = 5,10,15,20 on this dataset. Therefore,

hese results prove that MGSD + GMDA-RC is more robust to the

iewpoint and illumination variations, owing to the fact that

he project subspace by metric learning method helps to reduce

ntra-class variations and improves the matching accuracy. 

.3. Experiments on Wide Area Re-Identification dataset (WARD) 

The WARD dataset consists of 70 different pedestrians and 4786

mages which are acquired by three non-overlapping cameras in a

eal surveillance scenario. This dataset is of particular interest ow-

ng to huge illumination variations apart from resolution and pose

hanges. Example images are shown in Fig. 16 . All images are nor-

alized to 48 × 128 pixels. The dataset has three different cameras

nd we design the experiments for all the different camera pairs,

ncluding 1–2, 1–3 and 2–3. The 70 pedestrians in this dataset are
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Fig. 15. The CMC curves and rank-1 identification rates on the on the CUHK-01 dataset ( p = 485), by comparing the state-of-the-art methods, including 

MGSD + CRAFT + GMDA-RC, MGSD + GOG + GMDA-RC, MGSD + LOMO + GMDA-RC, MGSD + GMDA-RC, GOG + XQDA, LOMO + MLAPG, LOMO + XQDA, FFN4096 + XQDA , kLFDA , MFA , 

KISSME, SVMML and LFDA. 

Fig. 16. Examples of person Re-ID in the WARD dataset: (A) the examples acquired by camera A; (B) the examples acquired by camera B; (C) the examples acquired by 

camera C. 

Table 3 

The rank 1, 5,10,15,20 matching rate (%) with MGSD + CRAFT + GMDA-RC, MGSD + GOG + GMDA- 

RC, MGSD + LOMO + GMDA-RC, MGSD + GMDA-RC, GOG + XQDA, LOMO + MLAPG, LOMO + XQDA, 

FFN4096 + XQDA, kLFDA, MFA, KISSME, SVMML and LFDA on the CUHK-01 dataset ( p = 485 ). 

(The bold data is obtained by our methods). 

Method Rank = 1 Rank = 5 Rank = 10 Rank = 15 Rank = 20 

MGSD + CRAFT + GMDA-RC 75.69 90.89 95.38 98 98.65 

MGSD + GOG + GMDA-RC 74.46 90.47 95 96.67 98.59 

MGSD + LOMO + GMDA-RC 72.44 89.87 95.65 98 98.8 

MGSD + GMDA-RC 70.67 88.77 93.71 96.80 98.24 

GOG + XQDA 65.33 84.13 90.25 92.94 94.61 

LOMO + MLAPG 64.74 86.60 91.55 94.23 95.40 

LOMO + XQDA 63.02 83.33 88.87 91.93 93.70 

FFN4096 + XQDA 39.69 60.05 68.43 72.76 75.79 

kLFDA 35.91 52.71 61.05 66.22 69.77 

MFA 35.44 55.10 63.3 68.53 72.09 

KISSME 30.20 47.66 57.54 63.88 68.16 

SVMML 31.07 56.04 67.27 73.83 78.30 

LFDA 34.86 50.91 59.91 64.80 68.03 
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Fig. 17. The CMC curves and rank-1 identification rates on the WARD dataset ( P = 60 ) with different camera pairs (e.g. 1–2, 1–3, 2–3), by comparing the state-of-the-art 

methods, including MGSD + CRAFT + GMDA-RC, MGSD + GOG + GMDA-RC, MGSD + LOMO + GMDA-RC, MGSD + GMDA-RC, LOMO + XQDA, kLFDA, MFA, KISSME, SVMML and LFDA. 
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Table 4 

The rank 1, 5,10 matching rate (%) with the MGSD + CRAFT + GMDA-RC, MGSD + GOG + GMDA-RC, MGSD + LOMO + GMDA-RC, MGSD + GMDA-RC, LOMO + XQDA, 

kLFDA , MFA , KISSME, SVMML and LFDA on the WARD dataset ( p = 60 ). (The bold data is obtained by our methods). 

Method Camera 1–2 Camera 1–3 Camera 2–3 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

MGSD + CRAFT + GMDA-RC 65.94 91.08 96.25 61.55 90.16 96 73.61 93 98.52 

MGSD + GOG + GMDA-RC 66.39 90.74 95.89 63.26 89.32 95.32 74.67 92.43 98.36 

MGSD + LOMO + GMDA-RC 64.06 90.89 96 60.77 89.01 95.82 72.93 92.08 98 

MGSD + GMDA-RC 64.33 90.21 95.91 59.42 87.50 95.49 70.32 90.53 98.04 

LOMO + XQDA 58.65 84.93 94.35 48.38 77.89 89.36 61.26 86.70 95.10 

kLFDA 45.15 53.44 57.72 42.95 51.78 57.52 49.54 64.27 74.01 

MFA 47.84 66.63 79.38 42.57 61.42 73.69 53.03 71.94 81.39 

KISSME 51.26 74.23 84.90 39.08 60.24 70.54 51.23 75.85 87.52 

SVMML 22.15 53.34 70.08 20.74 57.63 62.24 28.15 60.73 78.68 

LFDA 46.01 52.74 56.41 42.74 51.58 58.04 48.55 64.68 77.87 
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ivided into training set which contains 10 persons and testing set

hich is composed of 60 persons. 

We compared our proposed MGSD + CRAFT + GMDA-RC,

GSD + GOG + GMDA-RC, MGSD + LOMO + GMDA-RC, MGSD + GMDA-

C with the state-of-the-art methods including LOMO + XQDA [12] ,

LFDA [29] , MFA [29] , KISSME [51] , SVMML [52] and LFDA [28] .

he experimental results are reported in Fig. 17 and Table 4 . For

he camera pairs 1–2, 1–3 and 2–3, our method achieves always

etter results than others. From Table 4 , with varying camera pairs

e.g. 1–2, 1–3, 2–3), we can see that the performances of our ap-

roach MGSD + GMDA-RC (64.33%, 59.42%, 70.32%) are respectively

mproved by 5.68%, 11.04%, 9.06% at rank = 1 for camera pairs 1–2,

–3 and 2–3, compared to the current best result of LOMO + XQDA

58.65%, 48.38%, 61.26%). It indicates that our approach considers

he representation consistency of multiple camera views and

an effectively adapt to the huge illumination variations apart

rom resolution and pose changes with multiple camera views.

eanwhile, the CMC curve also proves that out proposed method

GSD + GMDA-RC has a better performance at rank > 1 than other

ethods. That is to say, our proposed approach has a signifi-

antly better performance than other state-of-the-art methods

n this dataset. Besides, the combined features (MGSD + LOMO,

GSD + GOG, MGSD + CRAFT) can perform better than MGSD be-

ause of more captured information such as multiple color space

GOG) and the camera correlation aware feature augmentation

CRAFT) on this dataset. 

. Conclusion 

In this paper, we propose an efficient approach including max-

mal granularity structure descriptor (MGSD) and metric learning

GMDA-RC) for person Re-ID, which can extract salient informa-

ion and capture rich discriminative appearance whilst being ro-

ust against complex environments. The MGSD is an efficient de-

criptor and robust against the changes of viewpoint and illumina-

ion. In MGSD, we present a novel local maximal horizontal occur-

ence strategy on the biologically inspired feature (BIF) magnitude

mages, described by local maximal crossing coding histogram. It

an perfectly integrate the color, texture and spatial structural in-

ormation. Meanwhile, we have also proposed a metric learning

pproach based on multiple cross-views of discriminant analysis,

alled GMDA-RC that is very effective in dealing with the curse

f dimension problem faced by person Re-ID. Experimental results

n three challenging person Re-ID datasets, VIPeR, CUHK-01 and

ARD, show that the proposed method i.e. MGSD + GMDA-RC sig-

ificantly outperforms the state-of-the-art methods. Furthermore,

t can be also adapted to other image matching problems, such as

he heterogeneous face recognition. The future work will try to ad-

ress optimal choice of the parameters. In addition, the transfer

earning method could solve the problem of inconsistent distribu-
ions across multiple views and we will try to extend our model

ia its theory. 
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